ETHZURICh

Problem Setting

Let $(x^{\mu}, y^{\mu}) \in \mathbb{R}^d \times \mathcal{Y}, \ \mu \in [n]$, with $x^{\mu} \stackrel{iid}{\sim} \mathcal{N}(0_d, \Omega_0)$ and y^{μ} (random) target function. We consider a generalised linear est

$$\hat{y} = \sigma \left(\frac{\theta^{\top} \varphi(x)}{\sqrt{k}} \right),$$

with deep random features (dRF):

$$\varphi(x) \coloneqq \underbrace{(\varphi_L \circ \varphi_{L-1} \circ \cdots \circ \varphi_2 \circ \varphi_1)}_{(x),$$

where the post-activations are given by:

$$\varphi_{\ell}(h) = \sigma_{\ell} \left(\frac{1}{\sqrt{k_{\ell-1}}} W_{\ell} \cdot h \right), \quad \ell \in [L].$$

The entries of $\{W_{\ell} \in \mathbb{R}^{k_{\ell} \times k_{\ell-1}}\}_{\ell \in [L]}$ are $(W_{\ell})_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \Delta_{\ell})$.

Sample covariance matrices

Sample covariance matrix $\widehat{\Sigma} \coloneqq \mathcal{X}\mathcal{X}^{\top}/n \in \mathbb{R}^{d \times d}$ for $\mathcal{X} := (x_1, \dots, x_n)$, corresponding to the *population covariance matrix* Σ . Gram matrix $\check{\Sigma} := \mathcal{X}^{\top} \mathcal{X} / n \in \mathbb{R}^{n \times n}$ has the same non-zero eigenvalues. In the regime $d \sim n \gg 1$ the empirical spectral density $\mu(\Sigma) :=$ $d^{-1} \sum_{\lambda \in \text{Spec}(\widehat{\Sigma})} \delta_{\lambda}$ of $\widehat{\Sigma}$ is approximately equal to the *free multiplicative con*volution of $\mu(\Sigma)$ and a Marchenko-Pastur distribution μ_{MP}^c with c = d/n, (4)

$$\mu(\widehat{\Sigma}) \approx \mu(\Sigma) \boxtimes \mu_{\mathrm{MP}}^{d/n}$$

The free multiplicative convolution $\mu \boxtimes \mu_{\rm MP}^c$ is the unique distribution ν whose Stieltjes transform $m = m_{\nu}(z) := \int (x-z)^{-1} d\nu(x)$ satisfies the scalar self-consistent equation

$$zm = \frac{z}{1 - c - czm} m_{\mu} \left(\frac{z}{1 - c - czm}\right).$$

Gaussian universality of the test error

 $\theta \in \mathbb{R}^k$ is obtained via the regularized *empirical risk minimization*:

$$\hat{\theta} = \underset{\theta \in \mathbb{R}^k}{\operatorname{argmin}} \left[\sum_{\mu=1}^n \ell(y^{\mu}, \theta^{\top} \varphi(\mathbf{x}^{\mu})) + \frac{\lambda}{2} ||\theta||^2 \right],$$

where $\ell : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}_+$ is a convex loss function.

We assume that the labels are generated by a deep random neural network:

$$f_{\star}(\mathbf{x}^{\mu}) = \sigma^{\star} \left(\frac{\theta_{\star}^{\top} \varphi^{\star}(\mathbf{x}^{\mu})}{\sqrt{k^{\star}}} \right).$$

Here, $\theta_{\star} \in \mathbb{R}^{k^{\star}}$ and φ^{\star} denotes composition $\varphi_{L^{\star}}^{\star} \circ \ldots \circ \varphi_{1}^{\star}$:

$$\varphi_{\ell}^{\star}(\mathbf{x}) = \sigma_{\ell}^{\star} \left(\frac{1}{\sqrt{k_{\ell-1}^{\star}}} W_{\ell}^{\star} \cdot \mathbf{x} \right).$$

The matched setting $\varphi = \varphi^*$ with the readout layer trained using a square loss corresponds to $\mathcal{Y} = \mathbb{R}, \, \ell(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$. Here (6) equals to $\hat{\theta} = \frac{1}{\sqrt{k}} (\lambda I_k + \frac{1}{k} X_L X_L^{\top})^{-1} X_L y$ (7)

where $X_L \in \mathbb{R}^{k \times n}$ contains last layer features column-wise and $y \in \mathbb{R}^n$.

Deterministic equivalent and error universality of deep random features learning

Dominik Schröder^{1*} Hugo Cui^{2*} Daniil Dmitriev¹ Bruno Loureiro³

¹ ETH Zurich ² EPFL ³ ENS PSL * Equal contribution

Deterministic equivalents

The relationship (4) between the asymptotic spectra of Σ and $\hat{\Sigma}$, $\check{\Sigma}$ extends to eigenvectors, and the resolvents $\widehat{G}(z) := (\widehat{\Sigma} - z)^{-1}, \ \widecheck{G}(z) := (\widecheck{\Sigma} - z)^{-1}$ are asymptotically equal to *deterministic equivalents*.

Iteration over one layer

Consider a data m Furthermore, assur

matrix
$$X_0 \in \mathbb{R}^{d \times n}$$
 and $X_1 \coloneqq \sigma_1(W_1 X_0 / \sqrt{d}) \in \mathbb{R}^{k_1 \times n}$.
The methat the Gram matrix concentrates as
$$\frac{X_0^\top X_0}{d} - r_1 I \Big\|_{\max} \prec \frac{1}{\sqrt{n}}, \quad \left\| \frac{X_0}{\sqrt{d}} \right\| \prec 1$$
(8)

for some positive constant r_1 . For any deterministic A and Lipschitzcontinuous σ_1 , for any $z \in \mathbb{C} \setminus \mathbb{R}_+$ (denoting $\langle A \rangle \coloneqq \operatorname{Tr} A / n$ for $A \in \mathbb{R}^{n \times n}$) $c_2(z) \Big)^{-1} \Big] \Big\rangle \Big| \prec \frac{\langle AA^* \rangle^{1/2}}{\sqrt{n}},$ and similar result holds for the matrix $X_1X_1^{\top}/k_1$ Furthermore, Assump-

$$\left| \left\langle A \left[\left(\frac{X_1^\top X_1}{k_1} - z \right)^{-1} - \left(c_1(z) \frac{X_0^\top X_0}{d} + c_1(z) \frac{X_0}{d} + c_1(z) \frac{X_0^\top X_0}{d} + c$$

tion (8) holds true with X_0, r_1 replaced by X_1, r_2 , respectively.

Proof idea

The proof follows from the following sequence of approximations $\left(\frac{X_1^{\dagger}X_1}{k_1} - z\right)^{-1} \approx \left(c_0(z)\Sigma_X - z\right)^{-1} \approx \left(c_1(z)\Sigma_X - z\right)^{-1} \propto \left(c_1(z)\Sigma_X - z\right)^{-1} \approx \left(c_1(z)\Sigma_X - z\right)^{-1} \approx \left(c_1(z)\Sigma_X - z\right)^{-1} \approx \left(c_1(z)\Sigma_X - z\right)^{-1} \propto \left(c_1(z)\Sigma_$ where $\Sigma_X := \mathbb{E}_{w \sim \mathcal{N}(0,I)} \sigma\left(\frac{X_0^{\top} w}{\sqrt{d}}\right) \sigma\left(\frac{w^{\top} X_0}{\sqrt{d}}\right) \in \mathbb{R}^{n \times n}$. The first approximation follows from [1], and the second one from Hermite series expansion. The proposition can be iterated over arbitrary finite number of layers L

$$\left(\frac{X_L^{\top} X_L}{k_L} - z\right)^{-1} \approx \left(c_1' \frac{X_{L-1}^{\top} X_{L-1}}{k_{L-1}} + c_2'\right)^{-1} \approx \dots \approx \left(c_1 \frac{X_0^{\top} X_0}{d} + c_2\right)^{-1},$$
(10)

where c_1, c'_1, c_2, c'_2 are some functions of $z \in \mathbb{C} \setminus \mathbb{R}_+$. In the proof, we assume fixed X_0 and random W_{ℓ} , leading to Σ_X . This approach facilitates iteration over the layers and appears in [2]. Another view is to consider $X_{\ell}X_{\ell}^{\top}/n$ as a sample covariance matrix with population covariance $\Omega_{\ell} := \mathbb{E}_{X_0} \frac{X_{\ell} X_{\ell}}{n}$ since the matrix X_{ℓ} conditioned on W_1, \ldots, W_{ℓ} has independent columns. The matrices are related as the population covariance and Gram matrices. We also derive a heuristic formula for Ω_{ℓ} .

Ridge universality of matched target

Let $\lambda > 0$. In the limit $n \sim d \sim k_{\ell} \gg 1$, under Assumption (8), the asymptotic test error of the ridge estimator (7) on the target (1) with $L = L^*$ and $\varphi_{\ell}^* = \varphi_{\ell}$ and additive $\mathcal{N}(0, \Delta)$ noise is given by: $\epsilon_a(\hat{\theta}) \xrightarrow{k \to \infty} \epsilon_a^* = \Delta \left(\langle \Omega_L \rangle \check{m}_L(-\lambda) + 1 \right)$

$$\xrightarrow{} \epsilon_g^{\star} = \Delta \left(\langle \Omega_L \rangle \widetilde{m}_L(-\lambda) + 1 \right) \\ - \lambda (\lambda - \Delta) \langle \Omega_L \rangle \partial_\lambda \widetilde{m}_L(-\lambda)$$

where \check{m}_L can be recursively computed. This implies Gaussian universality of this model, since (1) agrees with the asymptotic test error of data $\mathbf{x} \sim \mathcal{N}(\mathbf{0}_d, \Omega_L)$ derived in [3].

$$p^{\mu} = f_{\star}(\mathbf{x}^{\mu})$$
 a
stimation:
(1)
(2)

ENS ÉCOLE NORMALE SUPÉRIEURE

$$_{1}(z)\frac{X_{0}^{\top}X_{0}}{d} + c_{2}(z)\Big)^{-1}, \quad (9)$$

The same result is shown to hold numerically for a much wider class of models, i.e., they belong to the *Gaussian universality class*. There is an equivalent Gaussian covariate model consisting of doing generalized linear estimation on $\check{\mathcal{D}} = \{v^{\mu}, \check{y}^{\mu}\}_{\mu \in [n]}$ with labels $\check{y}^{\mu} = f_{\star}(1/\sqrt{k^{\star}}\theta_{\star}^{\top}u^{\mu})$ and:

$$(u,v) \sim \mathcal{N} \begin{pmatrix} \Psi_{L^{\star}} & \Phi_{L^{\star}L} \\ \Phi_{L^{\star}L}^{\top} & \Omega_L \end{pmatrix}$$
(11)

Depth-induced implicit regularization

An insightful takeaway is that the activations in dRF (2) share the same population statistics as the activations in a deep *noisy* linear network

$$\varphi_{\ell}^{\rm lin}(\mathbf{x}) = \kappa_1^{\ell} \frac{W_{\ell}^{\top} \mathbf{x}}{\sqrt{k_{\ell-1}}} + \kappa_*^{\ell} \xi_{\ell}, \qquad (12)$$

where $\xi_{\ell} \sim \mathcal{N}(0_{k_{\ell}}, I_{k_{\ell}})$ is a Gaussian noise term.

There exists an interplay between the two peaks, with higher noise ξ_L both helping to mitigate the linear peak, and aggravating the non-linear peak. The depth of the network plays a role in that it modulates the amplitudes of the signal part and the noise part.

[1] C. Chouard. Quantitative deterministic equivalent of sample covariance matrices with a general dependence structure. arXiv preprint arXiv:2211.13044. 2022. [2] Z. Fan, Z. Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks. NeurIPS 2020. [3] E. Dobriban, S. Wager. High-dimensional asymptotics of prediction: Ridge regression and classification. The Annals of Statistics. 2018. [4] F. Gerace, B. Loureiro, F. Krzakala, M. Mézard, L. Zdeborová. Generalisation error in learning with random features and the hidden manifold model. ICML 2020.

Check it out!

General case

where $\Phi \in \mathbb{R}^{k^* \times k}$ and $\Psi \in \mathbb{R}^{k^* \times k^*}$ are the covariances between the model and target features and the target variance respectively. This provides an analogous contribution as [4] to the case of multi-layer random features.

Figure 1:Learning curves for ridge regression on a 1-hidden layer target function ($\gamma_1^{\star} =$ 2, $\sigma_1^{\star} = \text{sign}$) using a *L*-hidden layers learner with widths $\gamma_1 = \ldots = \gamma_L = 4$ and $\sigma_{1,\dots,L} = \tanh \arctan (\operatorname{left}) \text{ or } \sigma_{1,\dots,L}(x) = 1.1 \times \operatorname{sign}(x) \times \min(2,|x|) \text{ clipped linear}$ activation (right), for depths $1 \le L \le 6$. The regularization is $\lambda = 0.001$. Solid lines represent theoretical curves, while numerical simulations are indicated by *dots*. Two peaks, linear and non-linear, appear at $\alpha = n/d = 1$ and $\alpha = \gamma = 4$ respectively.

References