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Problem Setting

Let (xµ, yµ) ∈ Rd × Y , µ ∈ [n], with xµ iid∼ N (0d,Ω0) and yµ = f?(xµ) a
(random) target function. We consider a generalised linear estimation:

ŷ = σ

θ>ϕ(x)√
k

 , (1)

with deep random features (dRF):
ϕ(x) := (ϕL ◦ ϕL−1 ◦ · · · ◦ ϕ2 ◦ ϕ1)︸ ︷︷ ︸

L

(x), (2)

where the post-activations are given by:

ϕ`(h) = σ`

( 1√
k`−1

W` · h
)
, ` ∈ [L]. (3)

The entries of {W` ∈ Rk`×k`−1}`∈[L] are (W`)ij iid∼ N (0,∆`).

Sample covariance matrices

Sample covariance matrix Σ̂ := XX>/n ∈ Rd×d for X := (x1, . . . , xn),
corresponding to the population covariance matrix Σ.
Gram matrix qΣ := X>X/n ∈ Rn×n has the same non-zero eigenvalues.
In the regime d ∼ n � 1 the empirical spectral density µ(Σ̂) :=
d−1∑

λ∈Spec(Σ̂) δλ of Σ̂ is approximately equal to the free multiplicative con-
volution of µ(Σ) and a Marchenko-Pastur distribution µcMP with c = d/n,

µ(Σ̂) ≈ µ(Σ) � µ
d/n
MP . (4)

The free multiplicative convolution µ � µcMP is the unique distribution ν
whose Stieltjes transform m = mν(z) := ∫ (x − z)−1 dν(x) satisfies the
scalar self-consistent equation

zm = z

1− c− czm
mµ

(
z

1− c− czm

)
. (5)

Gaussian universality of the test error

θ ∈ Rk is obtained via the regularized empirical risk minimization:

θ̂ = argmin
θ∈Rk

 n∑
µ=1

`(yµ, θ>ϕ(xµ)) + λ

2
||θ||2

 , (6)

where ` : Y × R→ R+ is a convex loss function.
We assume that the labels are generated by a deep random neural network:

f?(xµ) = σ?
θ>? ϕ?(xµ)√

k?

 .
Here, θ? ∈ Rk? and ϕ? denotes composition ϕ?L? ◦ ... ◦ ϕ?1:

ϕ?`(x) = σ?`

 1√
k?`−1

W ?
` · x

 .
The matched setting ϕ = ϕ? with the readout layer trained using a square
loss corresponds to Y = R, `(y, ŷ) = 1/2(y − ŷ)2. Here (6) equals to

θ̂ = 1/
√
k(λIk + 1/kXLX

>
L )−1XLy (7)

where XL ∈ Rk×n contains last layer features column-wise and y ∈ Rn.

Deterministic equivalents

The relationship (4) between the asymptotic spectra of Σ and Σ̂, qΣ extends
to eigenvectors, and the resolvents Ĝ(z) := (Σ̂− z)−1, |G(z) := ( qΣ− z)−1

are asymptotically equal to deterministic equivalents.

Iteration over one layer

Consider a data matrix X0 ∈ Rd×n and X1 := σ1(W1X0/
√
d) ∈ Rk1×n.

Furthermore, assume that the Gram matrix concentrates as∥∥∥∥∥∥X
>
0 X0

d
− r1I

∥∥∥∥∥∥
max
≺ 1√

n
,

∥∥∥∥∥X0√
d

∥∥∥∥∥ ≺ 1 (8)

for some positive constant r1. For any deterministic A and Lipschitz-
continuous σ1, for any z ∈ C\R+ (denoting 〈A〉 := TrA/n for A ∈ Rn×n)∣∣∣∣∣∣

〈
A
[(X>1 X1

k1
− z

)−1
−
(
c1(z)X

>
0 X0

d
+ c2(z)

)−1]〉∣∣∣∣∣∣ ≺ 〈AA
∗〉1/2
√
n

,

and similar result holds for the matrix X1X
>
1 /k1 Furthermore, Assump-

tion (8) holds true with X0, r1 replaced by X1, r2, respectively.

Proof idea

The proof follows from the following sequence of approximations(X>1 X1

k1
− z

)−1
≈
(
c0(z)ΣX − z

)−1
≈
(
c1(z)X

>
0 X0

d
+ c2(z)

)−1
, (9)

where ΣX := Ew∼N (0,I)σ
(
X>0 w√
d

)
σ
(
w>X0√

d

)
∈ Rn×n. The first approximation

follows from [1], and the second one from Hermite series expansion.
The proposition can be iterated over arbitrary finite number of layers L(X>LXL

kL
− z

)−1
≈
(
c′1
X>L−1XL−1

kL−1
+ c′2

)−1
≈ . . . ≈

(
c1
X>0 X0

d
+ c2

)−1
,

(10)
where c1, c

′
1, c2, c

′
2 are some functions of z ∈ C \ R+.

In the proof, we assume fixed X0 and random W`, leading to ΣX. This
approach facilitates iteration over the layers and appears in [2]. Another
view is to considerX`X

>
` /n as a sample covariance matrix with population

covariance Ω` := EX0
X`X

>
`

n since the matrix X` conditioned on W1, . . . ,W`

has independent columns. The matrices are related as the population co-
variance and Gram matrices. We also derive a heuristic formula for Ω`.

Ridge universality of matched target

Let λ > 0. In the limit n ∼ d ∼ k` � 1, under Assumption (8), the
asymptotic test error of the ridge estimator (7) on the target (1) with
L = L∗ and ϕ∗` = ϕ` and additive N (0,∆) noise is given by:

εg(θ̂) k→∞−−−→ ε?g = ∆ (〈ΩL〉|mL(−λ) + 1)
− λ(λ−∆)〈ΩL〉∂λ|mL(−λ)

where |mL can be recursively computed.
This implies Gaussian universality of this model, since (1) agrees with
the asymptotic test error of data x ∼ N (0d,ΩL) derived in [3].

General case

The same result is shown to hold numerically for a much wider class of
models, i.e., they belong to the Gaussian universality class. There is an
equivalent Gaussian covariate model consisting of doing generalized linear
estimation on Ď = {vµ, y̌µ}µ∈[n] with labels y̌µ = f?(1/

√
k?θ>? u

µ) and:

(u, v) ∼ N
(

ΨL? ΦL?L

Φ>L?L ΩL

)
(11)

where Φ ∈ Rk?×k and Ψ ∈ Rk?×k? are the covariances between the model
and target features and the target variance respectively. This provides an
analogous contribution as [4] to the case of multi-layer random features.

Depth-induced implicit regularization

An insightful takeaway is that the activations in dRF (2) share the same
population statistics as the activations in a deep noisy linear network

ϕlin
` (x) = κ`1

W>
` x√
k`−1

+ κ`∗ξ`, (12)

where ξ` ∼ N (0k`, Ik`) is a Gaussian noise term.
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Figure 1:Learning curves for ridge regression on a 1-hidden layer target function (γ?1 =
2, σ?1 = sign) using a L−hidden layers learner with widths γ1 = ... = γL = 4 and
σ1,...,L = tanh activation (left) or σ1,...,L(x) = 1.1× sign(x)×min(2, |x|) clipped linear
activation (right), for depths 1 ≤ L ≤ 6. The regularization is λ = 0.001. Solid lines
represent theoretical curves, while numerical simulations are indicated by dots. Two
peaks, linear and non-linear, appear at α = n/d = 1 and α = γ = 4 respectively.

There exists an interplay between the two peaks, with higher noise ξL both
helping to mitigate the linear peak, and aggravating the non-linear peak.
The depth of the network plays a role in that it modulates the amplitudes
of the signal part and the noise part.
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