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Problem Setting

Let (z,y") € REx Y, u € [n], with 2 % N (04, ) and y* = fi(x") a
(random) target function. We consider a generalised linear estimation:

[0 p(x)
yg( o ) )

with deep random features (ARF):
o(x) = (propr-10---0 P20 p1)(), (2)
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where the post-activations are given by:

pe(h) = oy (\/%Wz ' h) , Le|Ll (3)

The entries of {W, € RF*¥-1}, 1 are (Wy);; 2 N0, ).

Sample covariance matrices

Sample covariance matriz ¥ = XX /n € R for X = (x1,...,x,),
corresponding to the population covariance matrix .
Gram matriz X .= X' X /n € R™" has the same non-zero eigenvalues.

In the regime d ~ n > 1 the empirical spectral density p(X) =
d— Y AeSpec(S) 0, of X is approximately equal to the free multiplicative con-

volution of pu(>) and a Marchenko-Pastur distribution uf;p with ¢ = d/n.

S d/n
u(S) = () B pisip- (4
The free multiplicative convolution p X u$p is the unique distribution v

whose Stieltjes transform m = m,(z) = [(x — 2z)"'dv(x) satisfies the
scalar self-consistent equation

Z Z
2m = my, ( ) . (5)
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Gaussian universality of the test error

§ € R* is obtained via the regularized empirical risk minimization:

n
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0 = argmin | > L(y", 0" o(x")) + Z]10]]] , (6)
HcRk =1 2

where £ : YV X R — R is a convex loss function.
We assume that the labels are generated by a deep random neural network:

iy _ e [ )
fix') =0 ( i )

Here, 6, € R¥ and ¢* denotes composition ¢%. o ... o ¢¥:
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The matched setting ¢ = ¢©* with the readout layer trained using a square
loss corresponds to Y = R, £(y,9) = /2(y — §)*. Here (6) equals to

0 =LV 4+ kX X)) Xy (7)

where X; € R*" contains last layer features column-wise and y € R™.
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Deterministic equivalents

The relationship (4) between the asymptotic spectra of 3 and >, ¥ extends
to eigenvectors, and the resolvents G(z) := (X — 2)71, G(z) == (X — 2)!
are asymptotically equal to deterministic equivalents.

Iteration over one layer

Consider a data matrix Xy € R>" and X = o1(W1X,/Vd) € RF*",

Furthermore, assume that the Gram matrix concentrates as

XX _ L%

d vn'Vd

max

<1 (8)

for some positive constant r;. For any deterministic A and Lipschitz-
continuous oy, for any z € C\R, (denoting (A) := Tt4/, for A € R"*")

<AKX1—];X1 Z>—1 B (cl(Z)X{ZXO I CQ(Z)>1]> . <A1\4>%>1/27

and similar result holds for the matrix XX\ /k; Furthermore, Assump-
tion (8) holds true with Xy, 1 replaced by X7, o, respectively.

Proof idea

The proof follows from the following sequence of approximations

(Xl;Xl Z>_1 ~ (CO(Z)ZX — z)_l ~ (q(z)X{iXO | cz(z)>_1, (9)

T
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where Xy = K, 0 ]>0( i )0( T ) e R"*". The first approximation

—1

follows from [1], and the second one from Hermite series expansion.
The proposition can be iterated over arbitrary finite number of layers L

(XITXL )‘1 N ( X, X1 />_1 o ( Xy Xo >‘1
< ~~ Cl | 62 ~~ Cl | CQ ]
kr k11 d

(10)
where ¢, ¢/, ¢o, ¢, are some functions of z € C\ R,.
In the proof, we assume fixed X and random W/, leading to >Xx. This
approach facilitates iteration over the layers and appears in [2|. Another

view is to consider X, X, /n as a sample covariance matrix with population
T

. XX . .,
covariance {2y = Ex, fn L since the matrix X, conditioned on W7, ..., W,
has independent columns. The matrices are related as the population co-
variance and Gram matrices. We also derive a heuristic formula for €),.

Ridge universality of matched target

Let A > 0. In the limit n ~ d ~ ky > 1, under Assumption (8), the
asymptotic test error of the ridge estimator (7) on the target (1) with
L = L* and ) = @y and additive N (0, A) noise is given by:
ey (0) =25 € = A((Q)ing (=) + 1)
— AMA = A)Qp)omr(—A)
where m can be recursively computed.

This implies Gaussian universality of this model, since (1) agrees with
the asymptotic test error of data x ~ N (04, §2) derived in [3].
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(General case

The same result is shown to hold numerically for a much wider class of
models, i.e., they belong to the Gaussian universality class. There is an
equivalent Gaussian covariate model consisting of doing generalized linear

estimation on D = {v", §#},,cr with labels ¢ = f.(1/Vi+6, ut) and:
Wi Orp
o)~ A (o f ) 1)

where @ € R ** and U € R¥**¥ are the covariances between the model
and target features and the target variance respectively. This provides an
analogous contribution as [4| to the case of multi-layer random features.

Depth-induced implicit regularization

An insightful takeaway is that the activations in dRF (2) share the same
population statistics as the activations in a deep noisy linear network

- LL X
lin 14 / ¢/
Yy (X) = Ki—F— + K&, 12

where & ~ N (0, I1,) is a Gaussian noise term.
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Figure 1:Learning curves for ridge regression on a 1-hidden layer target function (77 =
2, o7 = sign) using a L—hidden layers learner with widths v; = ... = v = 4 and
o011 = tanh activation (left) or oy . r(x) = 1.1 x sign(x) x min(2, |z|) clipped linear
activation (right), for depths 1 < L < 6. The regularization is A = 0.001. Solid lines

represent theoretical curves, while numerical simulations are indicated by dots. Two

.....

peaks, linear and non-linear, appear at @ = "/da = 1 and a = v = 4 respectively.

There exists an interplay between the two peaks, with higher noise &7, both
helping to mitigate the linear peak, and aggravating the non-linear peak.
The depth of the network plays a role in that it modulates the amplitudes
of the signal part and the noise part.
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