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Motivation

The statistics of trained neural network weights carry important information about

their generalization performance and inductive bias. Recent work suggests that rain-

bow networks, random networks with weights drawn from an ensemble with match-

ing statistics, can retain a comparable performance to the original trained neural

networks [Gut+23]. Motivated by this empirical observation, in this work we pro-

vide an exact asymptotic description of the generalization performance of Gaussian

rainbow networks in the proportional high-dimensional regime.

Our results shed light on the inductive bias of this class of networks by precisely

characterizing how the structured weights impact the performance, while also high-

lighting the limitations of this description of trained networks.

Ridge Regression

Supervised learning task with i.i.d. training data (xi, yi)i∈[n], xi ∈ Rp such that

E x = 0, E y = 0
and

E xx> = Ω ∈ Rp×p, E y2 = σ2 ∈ R+, E xy = φ ∈ Rp.

Regularized ridge regression with explicit solution

θ̂γ = arg min
θ

(
1
n

∑
i

(
yi − θ>xi

)2
+ γ‖θ‖2

2

)
= G(γ)Xy

n

in terms of the resolvent G(γ) of the sample-covariance matrix Ω̂,

Ω̂ := XX>

n
= 1

n

∑
i

xix
>
i , G(γ) :=

(
Ω̂ + γ

)−1
, X :=

(
x1, · · · , xn

)
∈ Rp×n.

Generalization error

Egen(γ) = E
(
y − θ̂>

γ x
)2

= σ2 − 2φ>G(γ)Xy

n
+ y>X>

n
G(γ)ΩG(γ)Xy

n

Background: Marchenko-Pastur

The resolvent G(γ) of the sample covariance matrix Ω̂ is defined as

G(γ) :=
(
Ω̂ + γI

)−1

The deterministic equivalent to G(γ) is given by

G(γ) ≈ κ(γ)
γ

(
Ω + κ(γ)

)−1
,

where the effective regularization κ(γ) is the unique solution to the equation

κ(γ) = γ + κ(γ)
n

Tr Ω
(
Ω + κ(γ)

)−1
.

and satisfies the bounds

γ ≤ κ(γ) ≤ min
{

γ + Tr Ω
n

,
γ

1 − 1
n rank Ω

}
and the asymptotics κ(0+) = limγ→0 κ(γ) = 0 for rank(Ω) ≤ n, while κ(0+) > 0 for

rank Ω > n.

Assumptions

Concentration. We assume that scalar Lipschitz functions of the feature matrix

X are sub-Gaussian. (Example. Lipschitz functions of Gaussian random vectors)

Comparable dimensions We assume that max{n, k, p} � (min{n, k, p})3/2,

somewhat relaxing the usual proportionality assumption.

Theorem (Generalization Error Equivalent)

The generalization error Egen is asymptotically equal to the deterministic quantity

E rmt
gen (γ) :=

σ2 − φ> Ω+2κ(γ)
(Ω+κ(γ))2φ

1 − 1
n Tr Ω2(Ω + κ(γ))−2. (1)

Special Case: Linear Labels

In the case of linearly generated labels

y = θ>
∗ x + ε, E ε = 0, E ε2 = δ2

the deterministic equivalent (1) admits the bias variance decomposition

E rmt
gen (γ) =

δ2 + κ(γ)2θ>
∗

Ω
(Ω+κ(γ))2θ∗

1 − 1
n Tr Ω2(Ω + κ(γ))−2 (2)

Main Case of Interest: Feature Ridge Regression

Consider the teacher-student setting, i.e. when

x = ϕ(x), y = θ>
∗ ϕ∗(x) + ε, E ε = 0, E ε2 = δ2,

for some random vector x ∈ Rd, and feature maps ϕ : Rd → Rp, ϕ∗ : Rd → Rk s.t.

E ϕ(x) = 0, E ϕ∗(x) = 0
and

E ϕ(x)ϕ(x)> = Ω, E ϕ(x)ϕ∗(x)> = Φ, E ϕ∗(x)ϕ∗(x)> = Ψ,

where ϕ(x) is called the student network and ϕ(x) is called the teacher network.

The deterministic equivalent (1) admits the bias variance decomposition

E rmt
gen (γ) =

δ2 + θ>
∗

(
Ψ − Φ> Ω+2κ(γ)

(Ω+κ(γ))2Φ
)
θ∗

1 − 1
n Tr Ω2(Ω + κ(γ))−2 (3)

In certain cases (see Linearization), it is possible to simplify the expression above

by replacing Ω, Ψ and Φ with easy-to-compute approximations.

Previous results

The linear label case reduces to ordinary linear regression, see e.g. [Bac24]

Our result confirms Conjecture 1 of [Lou+22]

Independently and concurrently to the current work [LP23] obtained similar

results under different assumptions. Most importantly [LP23] considers

one-layer unstructured random feature models and computes the empirical

generalization error for a deterministic data set, while we consider general

Lipschitz features of random data, and compute the generalization error

In the unstructured random feature model [MMM22; AP20] obtained an

expression for the generalization error under the assumption that the target

model is linear or rotationally invariant.

Case study: Gaussian rainbow networks

We take the MNIST dataset and normalize the images to have (empirical) mean zero.

We split the dataset into for parts DNN, Dreg, Dtest, Dcov. Then we train a simple two-

hidden layer neural network

ϕ(x) = relu(W2 relu(W1x)), f (x) = w>
3 ϕ(x)

to recognize whether a given digit is even or odd, using DNN

Input Layer ∈ ℝ²⁸ˣ²⁸ Hidden Layer ∈ ℝ¹⁵⁰⁰ Hidden Layer ∈ ℝ¹⁵⁰⁰ Output Layer ∈ ℝ¹

During training we save the weights W1, W2 to obtain a sequence of feature maps ϕt.

Then we use Dcov to empirically estimatea Ω and φ, choosing DNN large enough so

that |DNN| � p. Then we use Dreg to perform a feature regression with the trained

features and evaluate the generalization performance using Dtest.

Figure 1. Generalization error of feature ridge regression during training, compared with linear

regression. The deterministic equivalent remains an excellent approximation throughout the training

process. Note that for the specific task even the untrained network outperforms linear regression.

So far we have looked at fixed regularization. Using the deterministic equivalent we

can also determine the optimal regularization in order to obtain the following results:

Figure 2. Generalization error of feature ridge regression during training at optimal regularization,

compared with linear regression. In the right plot the dashed line represents linear regression.

aNote that σ = 1 by label choice

Linearization

Let (W`), (V`) be two collection of matrices with widths p`. Consider two networks:

ϕ(x) = ϕL(WLϕL−1(. . . ϕ1(W1x))) and ϕ∗(x) = ϕ̃L(VLϕ̃L−1(. . . ϕ̃1(V1x))),
the student and teacher networks respectively. Assume that rows of W` and V` are

i.i.d. ∼ w` and ∼ v` respectively. Define

C` := p` E w`w
>
` C̃` := p` E v`v

>
` Č` := p` E w`v

>
` .

Equation (3) defines a deterministic equivalent E rmt
gen (γ) for the generalization error

as a function of ΩL = Ex ϕ(x)ϕ(x)>, ΨL = Ex ϕ∗(x)ϕ∗(x)> and ΦL = Ex ϕ(x)ϕ∗(x)>.

These expectations are hard to compute because of non-linearities of ϕ(x), ϕ∗(x).
We obtain the following linearizations:

Ωlin
` = (κ1

`)2W`Ωlin
`−1W

>
` + (κ∗

`)2I,

Ψlin
` = (κ̃1

`)2V`Ψlin
`−1V

>
` + (κ̃∗

`)2I,

Φlin
` = κ1

`κ̃
1
`W`Φlin

`−1V
>

` + (κ̌∗
`)2I,

(4)

where (κ1
`, κ∗

`, κ̃1
`, κ̃∗

`, κ̌1
`) are some simple functions of ϕ`, ϕ̃`:

κ1
` := E ϕ′

`(N`), κ̃1
` := E ϕ̃′

`(Ñ`),

κ∗
` :=

√
E[ϕ`(N`)2] − r`(κ1

`)2, κ̃∗
` :=

√
E[ϕ̃`(Ñ`)2] − r̃`(κ̃1

`)2

κ̌∗
` :=

√
E[ϕ`(N`)ϕ̃`(Ñ`)] − ř`κ1

`κ̃
1
`,

(5)

where N`, Ñ` are jointly mean-zero Gaussians with

E N 2
` = r` := Tr[C`Ωlin

`−1] E Ñ 2
` = r̃` := Tr[C̃`Ψlin

`−1] E N`Ñ` = ř` := Tr[Č`Φlin
`−1].

Theorem (Linearization for 2-layered networks)

We prove that, under some assumptions, for L = 2,
‖Ω − Ωlin

2 ‖F + ‖Ψ − Ψlin
2 ‖F + ‖Φ − Φlin

2 ‖F ≺ 1. (6)

Proof technique: We use Wiener chaos expansion, the generalization of Hermite

expansion, to decompose random variables F = F (x):

F = E F +
∑
p≥1

Ip

(E DpF

p!

)
,

where Ip is the multiple integral and Dp is the p-th Malliavin derivative.

We also use Stein’s method, which allows to prove that

dW (F, N) . E | E F 2 − 〈DF, −DL−1F 〉|,
where F := w>ϕ1(Wx), N ∼ N (0, E F 2) and L−1 is the pseudo-inverse of the

generator of the Ornstein-Uhlenbeck semigroup.

Conjecture: We conjecture that Equation (6) holds for any fixed depth L ≥ 2.

References

[AP20] Ben Adlam and Jeffrey Pennington. “The Neural Tangent Kernel in High Dimensions: Triple Descent and

a Multi-Scale Theory of Generalization”. In: Proceedings of the 37th International Conference on Machine

Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.

PMLR, 13–18 Jul 2020, pp. 74–84. URL: https://proceedings.mlr.press/v119/adlam20a.html.
[Bac24] Francis Bach. “High-Dimensional Analysis of Double Descent for Linear Regression with Random Pro-

jections”. In: SIAM Journal on Mathematics of Data Science 6.1 (2024), pp. 26–50. DOI: 10 . 1137 /
23M1558781. eprint: https://doi.org/10.1137/23M1558781. URL: https://doi.org/10.1137/
23M1558781.

[Gut+23] Florentin Guth et al. A Rainbow in Deep Network Black Boxes. 2023. arXiv: 2305.18512 [cs.LG]. URL:
https://arxiv.org/abs/2305.18512.

[Lou+22] Bruno Loureiro et al. “Learning curves of generic features maps for realistic datasets with a teacher-

student model”. In: J. Stat. Mech. Theory Exp. 2022.11 (2022), Paper No. 114001, 78. DOI: 10.1088/
1742-5468/ac9825.

[LP23] Hugo Latourelle-Vigeant and Elliot Paquette. “Matrix Dyson equation for correlated linearizations and

test error of random features regression”. In: arXiv preprint arXiv:2312.09194 (2023).

[MMM22] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. “Generalization error of random feature and

kernel methods: hypercontractivity and kernel matrix concentration”. In: Appl. Comput. Harmon. Anal.

59 (2022), pp. 3–84. ISSN: 1063-5203. DOI: 10.1016/j.acha.2021.12.003.

| arXiv:2402.13999 ICML 2024 Vienna github:feature-ridge-regression |

https://proceedings.mlr.press/v119/adlam20a.html
https://doi.org/10.1137/23M1558781
https://doi.org/10.1137/23M1558781
https://doi.org/10.1137/23M1558781
https://doi.org/10.1137/23M1558781
https://doi.org/10.1137/23M1558781
https://arxiv.org/abs/2305.18512
https://arxiv.org/abs/2305.18512
https://doi.org/10.1088/1742-5468/ac9825
https://doi.org/10.1088/1742-5468/ac9825
https://doi.org/10.1016/j.acha.2021.12.003
https://arxiv.org/abs/2402.13999
https://github.com/wirhabenzeit/feature-ridge-regression

	References

